

ADVANCED GCE MATHEMATICS

Mechanics 2

MONDAY 16 JUNE 2008

Afternoon Time: 1 hour 30 minutes

4729/01

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \,\mathrm{m}\,\mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 6 printed pages and 2 blank pages.

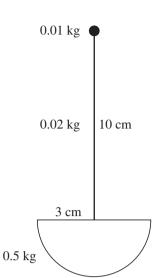
© OCR 2008 [M/102/2702]

- A car is pulled at constant speed along a horizontal straight road by a force of 200 N inclined at 35° to the horizontal. Given that the work done by the force is 5000 J, calculate the distance moved by the car. [3]
- 2 A bullet of mass 9 grams passes horizontally through a fixed vertical board of thickness 3 cm. The speed of the bullet is reduced from $250 \,\mathrm{m \, s^{-1}}$ to $150 \,\mathrm{m \, s^{-1}}$ as it passes through the board. The board exerts a constant resistive force on the bullet. Calculate the magnitude of this resistive force. [4]
- 3 The resistance to the motion of a car of mass 600 kg is kv N, where v m s⁻¹ is the car's speed and k is a constant. The car ascends a hill of inclination α , where sin $\alpha = \frac{1}{10}$. The power exerted by the car's engine is 12 000 W and the car has constant speed 20 m s⁻¹.

(i) Show that
$$k = 0.6$$
. [3]

The power exerted by the car's engine is increased to 16000 W.

(ii) Calculate the maximum speed of the car while ascending the hill. [3]

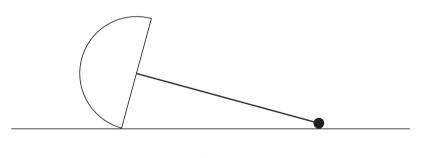

The car now travels on horizontal ground and the power remains 16000 W.

- (iii) Calculate the acceleration of the car at an instant when its speed is 32 m s^{-1} . [3]
- 4 A golfer hits a ball from a point O on horizontal ground with a velocity of 35 m s^{-1} at an angle of θ above the horizontal. The horizontal range of the ball is R metres and the time of flight is t seconds.
 - (i) Express t in terms of θ , and hence show that $R = 125 \sin 2\theta$. [5]

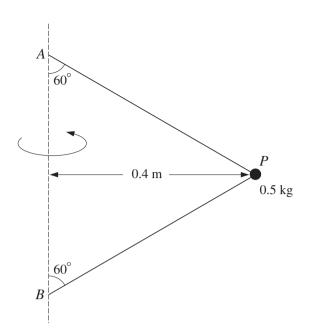
The golfer hits the ball so that it lands 110 m from *O*.

(ii) Calculate the two possible values of *t*.

[5]



A toy is constructed by attaching a small ball of mass 0.01 kg to one end of a uniform rod of length 10 cm whose other end is attached to the centre of the plane face of a uniform solid hemisphere with radius 3 cm. The rod has mass 0.02 kg, the hemisphere has mass 0.5 kg and the rod is perpendicular to the plane face of the hemisphere (see Fig. 1).


- (i) Show that the distance from the ball to the centre of mass of the toy is 10.7 cm, correct to 1 decimal place. [4]
- (ii)

5

Fig. 2

The toy lies on horizontal ground in a position such that the ball is touching the ground (see Fig. 2). Determine whether the toy is lying in equilibrium or whether it will move to a position where the rod is vertical. [4]

4

A particle *P* of mass 0.5 kg is attached to points *A* and *B* on a fixed vertical axis by two light inextensible strings of equal length. Both strings are taut and each is inclined at 60° to the vertical (see diagram). The particle moves with constant speed 3 m s^{-1} in a horizontal circle of radius 0.4 m.

(i) Calculate the tensions in the two strings.

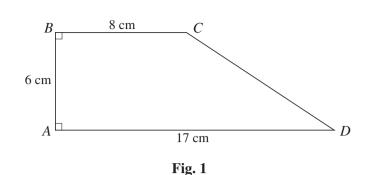
The particle now moves with constant angular speed $\omega \operatorname{rad} \operatorname{s}^{-1}$ and the string *BP* is on the point of becoming slack.

[7]

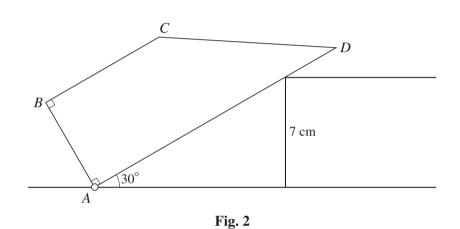
[5]

(ii) Calculate
$$\omega$$
.

7



Two small spheres A and B of masses 2 kg and 3 kg respectively lie at rest on a smooth horizontal platform which is fixed at a height of 4 m above horizontal ground (see diagram). Sphere A is given an impulse of 6 N s towards B, and A then strikes B directly. The coefficient of restitution between A and B is $\frac{2}{3}$.


(i) Show that the speed of B after it has been hit by A is 2 m s^{-1} . [6]

Sphere *B* leaves the platform and follows the path of a projectile.

(ii) Calculate the speed and direction of motion of *B* at the instant when it hits the ground. [7]

A uniform lamina ABCD is in the form of a right-angled trapezium. AB = 6 cm, BC = 8 cm and AD = 17 cm (see Fig. 1). Taking x- and y-axes along AD and AB respectively, find the coordinates of the centre of mass of the lamina. [8]

The lamina is smoothly pivoted at *A* and it rests in a vertical plane in equilibrium against a fixed smooth block of height 7 cm. The mass of the lamina is 3 kg. *AD* makes an angle of 30° with the horizontal (see Fig. 2). Calculate the magnitude of the force which the block exerts on the lamina. [5]

© OCR 2008

(ii)

8

(i)

4729 Mechanics 2

1	200cos35°	B1		
	$200\cos 35^\circ \ge d = 5000$	M1		
	d = 30.5 m	A1 3		3
2	$0.03R = \frac{1}{2} \times 0.009(250^2 - 150^2)$	M1	$150^2 = 250^2 + 2a \ge 0.03$	
	0.03R	B1	$a = \pm 2x10^6/3 \text{ or } \pm 666,667 $ (A1)	
	either K.E.	B1	F = 0.009a (M1)	
	R = 6000 N	A1 4	<i>unit errors</i>	4

3 (i)	D = 12000/20	B1	
	12000/20=k x 20 + 600 x 9.8 x 0.1	M1	
	k = 0.6	A1 3	AG
(ii)	$16000/v = 0.6v + 600 \ge 9.8 \ge 0.1$	M1	
	$0.6 v^2 + 588v - 16000 = 0$	M1	attempt to solve quad. (3 terms)
	$v = 26.5 \text{ m s}^{-1}$	A1 3	
(iii)	$16000/32 - 0.6 \ge 32 = 600a$	M1	
		A1	
	$a = 0.801 \text{ m s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0 = 35\sin\theta x t - 4.9t^2$	M1	$R=u^2\sin 2\theta/g$ only ok if proved
	$t = 35\sin\theta/4.9 \qquad 50\sin\theta/7$	A1	or 70sinθ/g aef
	$R = 35\cos\theta x t$ aef	B1	
			their t
	$R = 35^2 \sin\theta . \cos\theta / 4.9$	M1	
			eliminate t
	$R = 125 \sin 2\theta$	A1 5	
			AG
(ii)	$110 = 125 \sin 2\theta$	M1	
	$\theta = 30.8^{\circ} \text{ or } 59.2^{\circ}$	A1+1	
	t = 3.66 s or $6.13 s$	A1+1 5	10

5 (i)	3/8 x 3 (1.125)	B1		c.o.m. hemisphere	
	$0.53d = 5x0.02 + (10 + 3/8x3) \times 0.5$	M1		0.53e = 3x5/8x0.5 + 8x0.02 + 13x.01	
	```´´	A1		0.53f=3x3/8x0.5-5x0.02-10x0.01	
	d = 10.7	A1	4	<b>AG</b> ( $e = 2.316$ f = 0.684)	
(ii)	Attempt to calc a pair relevant to P,G	M1		distance / angle	
	OP=0.9 (pair), p= $73.3^{\circ}$ q= $16.7^{\circ}$ r= $76.9^{\circ}$	A1		not a complimentary pair	
	$(77.2^{\circ})$ , s=13.1°(12.8°) AC=0.86,				
	BC=0.67, AD=10.4 BD=10.2				
	r > p, $s < q$ , $p + s < 90$ ,	M1		make relevant comparison	
	0.67 < 0.86 , 10.2 < 10.4			0.7 < 0.9 (OG < OP) 10.7 < 10.9	
	it is in equilibrium	A1	4		8

#### **Mark Scheme**

6 (i)	$T\cos 60^{\circ} = S\cos 60^{\circ} + 4.9$ Tsin60° + Ssin60° = 0.5 x 3 ² /0.4 (S + 9.8)sin60° + Ssin60° = 45/4	M1 A1 M1 A1 M1		Resolving vertically nb for M1: (must be components – all 4 cases) Res. Horiz. mr $\omega^2$ ok if $\omega \neq 3$ If equal tensions 2T=45/4 M1 only	
	S = 1.60  N T = 11.4 N	A1 A1	7		
(ii)	$T\cos 60^\circ = 4.9$ T = 9.8	M1 A1	,	Resolving vertically (component)	
	Tsin60° = 0.5 x $0.4\omega^2$ $\omega = 6.51 \text{ rad s}^{-1}$	M1 A1 A1	5	Resolving horiz. (component) or 6.5	12
7 (1)	$u = 3 \text{ m s}^{-1}$	D1			
7 (i)	$u = 3 \text{ m s}^{-1}$ 6 = 2x + 3y	B1 M1			
(ii)	e = (y - x) / 3 y = 2 $v_{h} = 2$ $v_{v}^{2} = 2 x 9.8 x 4$ $v_{v} = 8.85$ (14\sqrt{10}/5)	A1 M1 A1 A1 B1 M1 A1	6	(e = $\frac{2}{3}$ ) (equs must be consistent) AG or (B1) $\frac{1}{2}mx2^{2}$ (B1) $\frac{1}{2}mxv^{2}$	
	speed = $\sqrt{(8.85^2 + 2^2)}$ 9.08 m s ⁻¹ tan ⁻¹ (8.85/2) 77.3° to horizontal	M1 A1 M1 A1	7	(B1) mx9.8x4 $v = \sqrt{2^2 + 2x9.8x4}$ or $\cos^{-1}(2/9.08)$ 12.7° to vertical	13
8 (i)	$\operatorname{com} \operatorname{of} \Delta 3 \operatorname{cm} \operatorname{right} \operatorname{of} C$	B1			
(ii)	$(48+27) \overline{x} = 48x4 + 27x11$ $\overline{x} = 6.52$ com of $\Delta 2$ cm above AD $(48+27) \overline{y} = 48x3 + 27x2$ $\overline{y} = 2.64$ 14F $3gcos30^{\circ} x \ 6.52$ $3gsin30^{\circ} x \ 2.64$	M1 A1 B1 M1 A1 A1 B1 B1 B1 B1	8	can be implied e.g. 7/sin30°. F 7.034 (AG) or (6.52-2.64tan30°) 52.0° (GAH) or (above)xcos30° (5.00)xcos30° (4.33)	
	14F=3gcos30°x6.52- 3gsin30°x2.64 F = 9.09 N	M1 A1	5	$14F = 3x9.8x7.034xcos52.0^{\circ}$	13